生物医学工程
学科概况
生物医学工程(Biomedical-Engineering)是一门新兴的边缘学科,它综合工程学、生物学和医学的理论和方法,在各层次上研究人体系统的状态变化,并运用工程技术手段去控制这类变化,其目的是解决医学中的有关问题,保障人类健康,为疾病的预防、诊断、治疗和康复服务,它有一个分支是生物信息方面主要攻读生物和化学。
发展历程
生物医学工程兴起于20世纪50年代,它与医学工程和生物技术有着十分密切的关系,而且发展非常迅速,成为世界各国竞争的主要领域之一。 生物医学工程学与其他学科一样,其发展也是由科技、社会、经济诸因素所决定的。这个名词最早出现在美国。1958年在美国成立了国际医学电子学联合会,1965年该组织改称国际医学和生物工程联合会,后来成为国际生物医学工程学会。 生物医学工程学除了具有很好的社会效益外,还有很好的经济效益,前景非常广阔,是目前各国争相发展的高技术之一。以1984年为例,美国生物医学工程和系统的市场规模约为110亿美元。美国科学院估计,到2000年其产值预计可达400~1000亿美元。 生物医学工程学是在电子学、微电子学、现代计算机技术,化学、高分子化学、力学、近代物理学、光学、射线技术、精密机械和近代高技术发展的基础上,在与医学结合的条件下发展起来的。它的发展过程与世界高技术的发展密切相关,同时它采用了几乎所有的高技术成果,如航天技术、微电子技术等。
学科内容
生物力学是运用力学的理论和方法,研究生物组织和器官的力学特性,研究机体力学特征与其功能的关系。生物力学的研究成果对了解人体伤病机理,确定治疗方法有着重大意义,同时可为人工器官和组织的设计提供依据。
生物力学中又包括有生物流变学血液流变学、软组织力学和骨骼力学、循环系统动力学和呼吸系统动力学等。目前生物力学在骨骼力学方面进展较快。
生物控制论是研究生物体内各种调节、控制现象的机理,进而对生物体的生理和病理现象进行控制,从而达到预防和治疗疾病的目的。其方法是对生物体的一定结构层次,从整体角度用综合的方法定量地研究其动态过程。
生物效应是研究医学诊断和治疗中,各种因素可能对机体造成的危害和作用。它要研究光、声、电磁辐射和核辐射等能量在机体内的传播和分布,以及其生物效应和作用机理。
生物材料是制作各种人工器官的物质基础,它必须满足各种器官对材料的各项要求,包括强度、硬度、韧性、耐磨性、挠度及表面特性等各种物理、机械等性能。由于这些人工器官大多数是植入体内的,所以要求具有耐腐蚀性、化学稳定性、无毒性,还要求与机体组织或血液有相容性。这些材料包括金属、非金属及复合材料、高分子材料等;目前轻合金材料的应用较为广泛。
医学影像是临床诊断疾病的主要手段之一,也是世界上开发科研的重点课题。医用影像设备主要采用 X射线、超声、放射性核素磁共振等进行成像。
X射线成像装置主要有大型X射线机组、X射线数字减影(DSA)装置、电子计算机X射线断层成像装置(CT);超声成像装置有B型超声检查、彩色超声多普勒检查等装置;放射性核素成像设备主要有γ照相机、单光子发射计算机断层成像装置和正电子发射计算机断层成像装置等;磁成像设备有共振断层成像装置;此外还有红外线成像和正在兴起的阻抗成像技术等。
医用电子仪器是采集、分析和处理人体生理信号的主要设备,如心电、脑电、肌电图仪和多参量的监护仪等正在实现小型化和智能化,通过体液了解生物化学过程的生物化学检验仪器已逐步走向微量化和自动化。
治疗仪器设备的发展比诊断设备要稍差一些。目前主要采用的是X射线、γ射线、放射性核素、超声、微波和红外线等仪器设备。大型的如:直线加速器、X射线深部治疗机、体外碎石机、人工呼吸机等,小型的有激光腔内碎石机、激光针灸仪以及电刺激仪等。
手术室中的常规设备已从单纯的手术器械发展到高频电刀、激光刀、呼吸麻醉机、监护仪、X射线电视,各种急救治疗仪如除颤器等。
为了提高治疗效果,在现代化的医疗技术中,许多治疗系统内有诊断仪器或一台治疗设备同时含有诊断功能,如除颤器带有诊断心脏功能和指导选定治疗参数的心电监护仪,体外碎石机中装备了进行定位的X射线和超声成像装置,而植入人体中的人工心脏起搏器就具有感知心电的功能,从而能作出适应性的起搏治疗。
介入放射学是放射学中发展速度最快的领域,也就是在进行介入治疗时,采用了诊断用的x射线或超声成像装置以及内窥镜等来进行诊断、引导和定位。它解决了很多诊断和治疗上的难题,用损伤较小的方法治疗疾病。
目前各国竞相发展的高技术之一为医学成像技术,其中以图像处理,阻抗成像、磁共振成像、三维成像技术以及图像存档和通信系统为主。在成像技术中生物磁成像是最新发展的课题,它是通过测量人体磁场,来对人体组织的电流进行成像。
生物磁成像目前有二个方面。即心磁成像可用以观察心肌纤维的电活动,可以很好地反映出心律失常和心肌缺血和脑磁成像用以诊断癫痫活动、老年性痴呆和获得性免疫缺陷综合征的脑侵入,还可以对病损脑区进行定位和定量。
另一个世界各国竞相发展的高技术是信号处理与分析技术,其中包括心电信号、脑电、眼震、语言、心音呼吸等信号和图形的处理与分析。
高技术领域中还有神经网络的研究,目前世界各国的科学家为此掀起了一个研究热潮。它被认为是有可能引起重大突破的新兴边缘学科,它研究人脑的思维机理,将其成果应用于研制智能计算机技术。运用智能原理去解决各类实际难题,是神经网络研究的目的,在这一领域已取得可喜的成果。
开设学校
浙江大学、西安交通大学、 南方医科大学、四川大学、天津大学、大连理工大学、上海交通大学、上海理工大学、清华大学、首都医科大学、东南大学、华中科技大学、复旦大学、重庆大学、同济大学、北京大学、中南大学、中国科学技术大学、电子科技大学、,西南科技大学,北京航空航天大学、北京工业大学、中国医科大学、山东大学、山东科技大学、湖南大学、重庆医科大学、中山大学、深圳大学、天津医科大学、厦门大学、吉林大学、华南理工大学、暨南大学、郑州大学、首都医科大学、西安电子科技大学、南京理工大学、北京理工大学、西北工业大学、东北大学、淮阴师范学院`燕山大学、华东理工大学、武汉大学、西南交通大学、河北工业大学、北京邮电大学、南京航空航天大学、南开大学、太原理工大学、上海大学、江苏大学、天津工业大学、南京大学、云南大学、苏州大学、中南民族大学、哈尔滨工程大学、山东中医药大学、武汉理工大学、广西医科大学、成都信息工程学院,佳木斯大学,山东科技大学,昆明理工大学等
典型院系
北京大学工学院生物医学工程系
注重与国际前沿研究和发展密切结合,开展生物医学工程相关的人才培养和科学研究。目前已经建设了若干研究室和实验室,正在开展生物功能分子与系统工程、生物界面和功能材料、生物医学建模与仿真、细胞力学与微纳米技术、生物信息学、医学信号和图像技术等方面的研究。
博士点:“生物力学与生物医学”博士点
联合博士点项目:北京大学—佐治亚理工学院—埃默里大学“生物医学工程”博士生联合培养。
硕士点:“生物医学工程”、“生物力学与生物医学”
本科:北大“生物医学工程”专业从2010年起招生。 聘请了空军航空医学研究所俞梦孙院士、北京航空航天大学生物与医学工程学院樊瑜波院长、美国佐治亚理工学院朱承教授、中科院自动化研究所田捷研究员为北京大学工学院兼职教授。
生物医学工程系主任为长江学者特聘教授,国家杰出青年基金获得者,国家科技部重点基础研究计划“973”项目“视觉修复基础理论与关键科学问题”首席科学家任秋实教授。
浙江大学生物医学工程与仪器科学学院生物医学工程学系
生物医学工程学系,其前身可追溯到1977年在国内率先设立的生物医学工程与仪器专业,以后相继建成了中国生物医学工程学科的第一个硕士学位授予点、第一个博士学位授予点、第一个博士后科研流动站。该系所依托的生物医学工程一级学科是21世纪生命科学的重要支柱以及引领当今国际未来的前沿学科,旨在利用现代工程技术手段解决生物医学上的检测、诊断、治疗、管理等问题以及深入探索生命系统的各种运动机理及其规律性。作为国家“211工程”和“985振兴计划”重点建设学科,浙江大学生物医学工程学科在新一轮的教育部生物医学工程一级学科整体水平评估中学术声誉位列全国首位,与此同时,该学科自2002年成为国家重点学科后,2007年又再次被确认为国家重点学科。新近隶属该系的生物医学工程专业被列入浙江大学首批特色专业建设项目。
该系建有《生物传感技术国家专业实验室》、《生物医学工程教育部重点实验室》、《浙江省心脑血管、神经系统药物筛选和中药开发及评价重点实验室》、卫生部、教育部共同批准设立的《浙江大学生物医学工程技术评估中心》等研究机构和实验室。现有专职教师30余人,其中教授11人,副教授15人,同时聘请了美国哈佛大学N.Y.S. Kiang、加州大学W.J. Freeman等一批国际著名学者任讲座教授、名誉教授和客座教授。经过整整三十年的持续发展,已逐步形成了包含本科、硕士、博士、博士后多层次的人才培养体系,练就了一支以中青年教师为主,具有医学、工学、理学等多学科交叉、基础扎实的教学和科研队伍,形成并发展了生物医学信息、生物传感技术及医学仪器、定量与系统生理方法学研究等三大研究方向。
系主任:宁钢民教授
东南大学生物科学与医学工程学院
东南大学生物科学与医学工程学院的前身是生物科学与医学工程系,该系由韦钰院士创建于1984年10月。2006年8月,为适应学科发展需要,经学校研究决定,成立生物科学与医学工程学院。学院的科学研究及学生培养方向瞄准21世纪主导学科——生命科学与电子信息科学,强调这两个学科的交叉与渗透,综合应用电子信息科学理论与方法解决生物医学领域中的科学问题,发展现代生命科学技术。人才培养面向生物医学工程领域,涵盖本科、本硕七年一贯制、硕士、博士、博士后等多个层次。
学院在生命科学领域中的研究与应用处于国内领先水平。目前拥有一个国家重点学科——生物医学工程,该学科参加了2006年的全国一级学科评估,最终排名全国第一,2007年在国家重点学科考核评估中排名第一。拥有一个一级学科博士点、七个二级学科博士点,一个生物医学工程博士后流动站,该站于2005年被评为国家优秀博士后流动站;拥有生物电子学国家重点实验室、江苏省生物材料与器件重点实验室,同时还拥有苏州市生物医用材料与技术重点实验室、苏州市环境与生物安全重点实验室、无锡市生物芯片重点实验室等科研基地。拥有两个教学实验中心:医用电子技术实验中心(校级创新实验平台)、生物技术与材料实验中心。
生物科学与医学工程学院已建成一支多学科交叉、以优秀中青年博士为主、拥有多名国家级专家的高水平学术梯队,现有专职教师60余人,其中院士1人,长江学者特聘教授3人,国家杰出青年基金获得者3人,教授20人,副教授20人,博士生导师18人,硕士生导师25人,85%以上的教师具有博士学位。2002年该梯队被评为江苏省“青蓝工程”省级优秀学科梯队。2002年,以陆祖宏教授为学术带头人的科学研究团队,得到国家自然科学基金创新研究群体的资助;2005年,该团队通过国家组织的评估,又得到了三年的滚动资助。
院长:顾宁教授
生物成分和结构的分析 通过外界因素的作用,观察人体各种类型的反应,以分析生理和病理状态下的状况。生物物质的组成成分,可利用各种类型的光谱、磁共振和其他波谱技术,对离体样品或对活体进行分析,以至做在位微区分析。如利用近红外光谱技术,配合以复杂光谱数据的多变量统计方法,可望不必抽血而对人的血脂进行无损测量。急性淋巴性白血病患者血清的电子自旋共振谱,比正常人在低场方向多一个吸收峰。由于制造出大容积的超导磁体,可放入人体并测出任何部位的高分辨核磁共振谱,以监测在正常及疾病时各器官的代谢,如取得移植前肾脏代谢状态的信息。对亚细胞及分子层次的分析,要先利用色谱、离心、质谱等方法进行分离提纯,或用各种显微光谱技术直接分析。对生物大分子的氨基酸或核苷酸组成也发展了顺序分析方法。生物结构的分析,可在不同层次进行。
器官水平的可用放射性同位素体外显像的方法进行扫描或照像。B 型超声断层显像,是目前超声诊断的最主要方法,能适时显示人体内组织、器官的形态,可用来诊断2毫米大小的原发性肝癌及胰腺瘤等。计算机辅助断层扫描显像术(CT)将不同角度的投影数据进行处理,重建成横断层图像。临床用的X射线CT,其空间分辨率已达1毫米以下,高速X射线CT 已可进行心脏动态观察。利用正电子发射核素可以标记体内各种化合物或其代谢产物,故正电子发射CT可反映人体的生理、病理及代谢状况,是研究脑功能的有力手段。超声CT也正在发展中。核磁共振CT通过氢、磷、钠等核的分布显示人体内部的形态,了解局部的生理、生化信息。其空间分辨率不断提高,1986年利用磁场强度为9.5特斯拉 89毫米直径的高分辨率核磁共振谱仪,已得到一种蟾蜍卵的单个细胞的核磁共振像。采用激光或超声,根据多卜勒频移效应,可测量血管或心脏内的血液流速、流量、流向及血管内的通、断,心脏瓣膜的运动状况;可诊断大脑血流状态,用于诊断、预防中风;还可测量胎儿的活动。细胞水平和亚细胞水平的结构可用各种光学显微术或电子显微术来分析。超声显微镜的分辨率有可能超过光学显微镜,优于0.5微米。
扫描隧道显微术是一种观查样品表面的光学显微技术,已可达电子显微镜的分辨率。对于显微镜样品的连续切片,或用光学聚焦的方法得到透明样品不同深度的显微图像,可用计算机技术进行三维重建,得到样品形态的三维图像。已采用模式识别与计算技术对细胞或染色体的形态作自动分析,前者已有仪器用于癌症普查。由于采用多种光谱和波谱技术已得到了细胞膜的分子动力学过程的大量知识。还广泛利用 X射线或中子对生物大分子的结构作散射、衍射分析。 |